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Abstract— We propose a novel control framework to enable
nonholonomic wheeled mobile robots (WMRs) to autonomously
drive in an environment with the speed fast enough so that
the dynamics effect (e.g., Coriolis effect) is not negligible,
yet, still less than a certain threshold to prevent slippage
at the wheels. For this, instead of the Newtonian vehicle
modeling, we adopt Lagrange-D’Alembert formulation, which
then allows us to explicitly relate the system’s state/control with
the constraint force, so that we can predict/detect possibility of
a given motion’s violating the no-slip condition. We present a
scheme to generate a no-slip/collision-free timed-trajectory for
the WMRs using this Lagrange-D’Alembert formulation. We
also propose a backstepping-based control law, which enables
the WMR to track the generated trajectory while respecting
its nonholonomic constraints. Experiment, using a modified
commercial radio-controlled car, is performed to verify the
theory.

I. INTRODUCTION

Wheeled mobile robots (WMRs) have been extensively
studied, yet, majority of their autonomous control results
are focused on their kinematics control, assuming that their
driving speed is slow enough so that the dynamics effect
are negligible and/or the nonholonomic constraints (i.e., no-
slip condition) are somehow enforced all the time (e.g., [1],
[2], [3], [4], [5], [6], [7], [8], [9]). Our ultimate goal is to
extend the current capability of the autonomous control for
the nonholonomic WMRs toward their dynamic driving with
fast driving speed.

This we believe would be possible given the substantially-
enhanced sensors, actuators and computing systems, as ev-
idenced by the recent progress of autonomous control to
achieve aggressive and even acrobatic behavior of quadro-
copters [10], [11]. Many hobbyists can perform such dy-
namic driving of the WMR. However, to our knowledge, such
dynamic driving considering slip has very rarely achieved
through autonomous control, and, in this paper, we provide a
first step toward this autonomous control of dynamic driving
of WMRs.

More specifically, as a first step toward this dynamic
autonomous driving of WMRs, in this paper, we consider
the problem where a WMRs (i.e., radio-controlled car: see
Fig. 1) is required to drive with a speed as fast as possible
while preventing slippage in an environment filled with some
obstacles. Dynamic driving of utilizing slippage rather than
preventing it will be studied in a future publication. The key
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Fig. 1. Autonomously-controlled radio-controlled car (Traxxas Slash c©:
http://traxxas.com).

challenge to achieve this dynamic, yet, still no-slip, driving
is then how to ensure the driving speed be as fast as possible,
yet, only to the extent the (static) friction can provide enough
constraint force to maintain no-slip condition of the wheels.

To analyze this interplay between the (nonholonomic)
WMR’s dynamic effect and the friction, there are two ways
of modeling the WMRs: 1) Lagrange-D’Alembert equation
[12], [13], which typically assumes no-slip condition for each
wheel, thus, more suitable when the speed of the vehicle is
slow so that the friction can provide necessary traction to
prevent slippage; and 2) Newtonian dynamics equation with
“magic” formula [14], [15], which has been widely utilized
for analyzing vehicle dynamics, is more suitable to address
fast driving with slippage, yet, typically requires to solve all
the dynamics equations to obtain any quantity of interests.

In this paper, in contrast to other works on dynamic driving
with possible slippage, we rely on the Lagrange-D’Alembert
formulation to model the WMRs. More precisely, we first
generate collision-free path for the WMR in the environment
with obstacles as a combination of arcs and straight lines
similar to the case of optimal motion generation of Dubins
car [16]. Then, for each path segment and their concate-
nation, we produce a timed-trajectory, that guarantees no-
slip condition be enforced through the driving. For this, we
utilize Lagrange-D’Alembert formulation to explicitly relate
the vehicle’s motion and the necessary friction to prevent the
wheel slippage, that is,

λ = (A(q)M−1(q)AT (q))−1[A(q)M−1(q)τ + Ȧ(q)q̇] (1)

where λ ∈ <m is the Lagrange multiplier, A(q) is the matrix
characterizing the nonholonomic no-slip constraint, M(q) is
the inertia matrix, τ is the torque input, and q ∈ <n is the
configuration of the WMR. Then, for each timed-trajectory
segment, we can explicitly compute the constraint force to
prevent slippage. If we generate WMR’s motion so that this
constraint force is less than the maximum (static) friction
force on each segment and at their concatenations, we can
then enforce no-slip condition throughout the whole dynamic
driving. For this, we can exploit the well-known time-scaling
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property of the Lagrange-D’Alembert equation [17], [18].
We also derive a backstepping feedback control law to drive
the nonholonomic/dynamic WMR to track this no-slip timed-
trajectory, and validate the proposed control framework via
simulation as well as via experiment using hacked radio-
controlled car (Fig. 1).

We believe the Lagrange-D’Alembert formulation has the
following advantages over the Newtonian formulation for
the modeling of dynamic driving with possible slippage,
although the latter has been de facto modeling tool thereof:
it allows us to explicitly compute necessary friction force
to predict whether a wheel will slip or even trigger that;
and its robot-like dynamics structure allows us to apply
the well-known time-scaling property of, and control design
techniques developed for, the standard robotic systems.

Some relevant results to this paper are as follow. The
results in [9], [19], [20] are based on the purely-kinematic
model, thus, limited to slow-driving and not suitable for
dynamic driving. On the other hand, the schemes proposed
in [3], [21], [22] assume the no-slip condition be somehow
enforced all the time, excluding any possibility of slip, which
may occur by the control action itself. The problem of
robotic vehicle drifting control has been recently studied
in [23], [24], [25], which utilize Newtonian modeling, thus,
not exploring potential benefits of the Lagrange-D’Alembert
formulation as stated above. This paper is an extension
of our prior results in utilizing the Lagrange-D’Alembert
dynamics and passivity property of mechanical systems with
nonholonomic constraints [26], [27].

The rest of the paper is organized as follows. Lagrange-
D’Alembert dynamics formulation of WMR is presented in
Sec. II. Path planning and trajectory generation guaranteeing
no-slip condition are proposed in Sec. III. Backstepping-
based trajectory control law, which takes into account the
nonholonomic constraint of the WMR, is then presented
with simulation results in Sec. IV. Experimental results with
some details on our own radio-controlled driving vehicle are
provided in Sec. V. Concluding remarks are then given in
Sec. VI.

II. LAGRANGE-D’ALEMBERT DYNAMICS OF WMR
BICYCLE MODEL

To derive the dynamics of the radio-controlled car WMR
in Fig. 1, we simplify its dynamics as that of the bicycle
as frequently done in vehicle dynamics/control community
to approximate full-dynamics of the vehicle and design a
simplified control for that. This bicycle model for our WMR
is depicted in Fig. 2, where (x, y, θ, δ) are the WMR’s mass
center position, yaw angle, and steering angle of the front
wheel; and d1, d2 > 0 are the distances of the rear and front
wheels from (x, y).

We define the configuration of the bicycle WMR s.t.,

q := [x, y, θ, α, β, δ]T ∈ <6

where α, β are the rotation angles of the front and rear
wheels. The no-slip condition of the two wheels can then
be written by

A(q)q̇ = 0 (2)

Fig. 2. Bicycle model of radio-controlled WMR with instantaneous center
of rotation.

with

A(q) :=


cδ+θ sδ+θ d2 s δ −r 0 0
− sδ+θ cδ+θ d2 c δ 0 0 0
c θ s θ 0 0 −r 0
− s θ c θ −d1 0 0 0

 ∈ <4×6

where c θ = cos θ, s θ = sin θ, cδ+θ = cos(δ + θ), sδ+θ =
sin(δ + θ), and r > 0 is the radius of the wheels. Note that
the first two lines of (2) are no-slip conditions of the front
wheel for the longitudinal and lateral directions, whereas
the last two lines that of the rear wheel. This constraint (2)
is in so called Pfaffian form and constitutes nonholonomic
constraints [12].

Since a potential energy is absent in the bicycle WMR in
Fig. 2, the Lagrangian L is simply given by its kinetic energy,
i.e., L(q, q̇) = κ(q̇) := (1/2)q̇TMq̇, where the inertia matrix
M ∈ <6×6 is also given by a constant matrix s.t.,

M =


m 0 0 0 0 0
0 m 0 0 0 0
0 0 I + J 0 0 J
0 0 0 IF 0 0
0 0 0 0 IR 0
0 0 J 0 0 J


where m, I, IF , IR, J > 0 are respectively the mass and the
moment of inertia of the vehicle, the moment of inertia of
the two wheels and that of the front wheel along the steering
direction. Then, the Lagrange-D’Alembert equation of the
bicycle WMR dynamics is given by

Mq̈ +AT (q)λ = τ (3)

where AT (q)λ is the constraint force, with the Lagrange
multiplier λ =: (λ1, λ2, λ3, λ4) ∈ <4 characterizing its
magnitude; and

τ = [0, 0, 0, τF , τR, τδ]
T ∈ <6

with τF , τR being the torque input for the rolling motion
of the front and rear wheels, and τδ for the steering motion
of the front wheel. Here, note that we do not have a direct
control for the translation and rotation of the vehicle body.

Our radio-controlled WMR in Fig. 1 is four-wheeled drive
with differentials at the front, rear axles and center. Even so,
similar to its wide applications in vehicle dynamics, we think
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the bicycle model in Fig. 2 would be a reasonable simpli-
fication suitable for the control design of this paper. And
our radio-controlled WMR splits the motor torque evenly
between the front and rear with center open differential, i.e.,
τF = τR = 0.5τM , where τM is motor torque. Other details
on our radio-controlled WMR will be presented in Sec. V.

We can then see from (2) that (λ1, λ2) and (λ3, λ4) in
(3) respectively represent the magnitude of the longitudinal
and lateral constraint forces at the front and rear wheels to
enforce each wheel’s no-slip condition. This then means that,
the front wheel (or rear wheel, resp.) will not slip if√

λ21 + λ22 ≤ µsFFz (or
√
λ23 + λ24 ≤ µsFRz , resp.) (4)

where FFz, FRz are the normal reaction force at the front
and rear wheels exerted by the ground, which are given by

FFz ≈
d1

d1 + d2
mg, FRZ ≈

d2
d1 + d2

mg (5)

from FFz + FRz = mg and d1FRz − d2FFz + h(λ1 cos δ −
λ2 sin δ + λ3) = 0, with the assumption that h ≈ 0 (i.e.,
with no weight-transfer between the front and rear wheels).
Of course, it is also possible to include the effect of weight
transfer while considering non-zero h. In this case, FFz, FRz
can still be computed as a function of q, q̇, τ , as λi can be
obtained from (1) as a function thereof. And µs is the known
static friction coefficient. Some papers (e.g. [28], [29]) sup-
pose method that can estimate the friction coefficient in real
time in order to know friction coefficient precisely, but in
this paper, we spare it for a future publication.

From (3), we can then obtain the “reduced” dynamics
along the velocity directions respecting the constraints (2).
That is, from the nonholonomic constraints (2), we can write

q̇ = D(q)η (6)

where the columns of D(q) ∈ <6×2 constitute the null space
A(q) (i.e., A(q)D(q) = 0) and η := [η1, η2]

T ∈ <2. In
particularly, if we choose

D(q) =



r
d1+d2

[d1 cδ+θ +d2 c δ c θ] 0
r

d1+d2
[d1 sδ+θ +d2 c δ s θ] 0

r
d1+d2

s δ 0

1 0
c δ 0
0 1

 ∈ <
6×2

then, η1 = α̇, η2 = δ̇ respectively represents the linear
velocity of the WMR vehicle body and the front wheel
steering angular rate.

By applying (6) to (3), the “reduced” dynamics equation
is achieved s.t.,

H(q)η̇ +Q(q, q̇)η = DT τ (7)

where H(q) := DT (q)MD(q) ∈ <2×2 is symmetric
and positive-definite reduced inertia matrix and Q(q, q̇) :=
DT (q)MḊ(q) ∈ <2×2 with Ḣ−2Q being skew-symmetric.
Reduced Dynamics equation (7) shows that the first low
describes the forward dynamics on a segment, and second
low determine instantaneous curvature under the no-slip
condition.

Fig. 3. Generated path consisting of arc and straight line segments.

One of the key advantage of using Lagrange-D’Alembert
formulation (3) as compared to the Newtonian modeling
is then that, given the vehicle motion (i.e., q(t), q̇(t)) and
control input τ , we can explicitly compute from (1) these
constraint forces λi and use it to see if this motion (q(t), q̇(t))
would be feasible under the no-slip condition. This advantage
will be used to generate no-slip trajectory generation in the
next Sec. III.

III. PATH GENERATION AND TRAJECTORY GENERATION
FOR DYNAMIC DRIVING

In this paper, what we want here is to control the WMR
to autonomously drive in the obstacle-cluttered environment
with the speed as fast as possible, yet, only to the extent
permissible by the friction to enforce no-slip condition as
specified by (4). For this, similar to the optimal path gener-
ation for Dubins car [16], we first produce the collision-free
path as composed of straight line segments and arc segments,
each with a constant curvature. See Fig. 3.

If the no-slip conditions are preserved both for the front
and rear wheels, as shown in Fig. 3, their velocity should
be all along the longitudinal direction with zero component
along the lateral direction. We can also define the instanta-
neous center of rotation, which, in this case, should be on the
line perpendicular to the rear wheel center. Let us denote by
lR and lF the instantaneous curvature at the rear and front
wheels. We then have, from Fig. 3,

lF =
d1 + d2
sin δ

, lR = lF cos δ =
d1 + d2
tan δ

(8)

that is, the instantaneous curvatures are completely deter-
mined by the steering angle δ under the no-slip condition.

Also, from lF θ̇ = rα̇ and lRθ̇ = rβ̇, we have

θ̇ =
r

d1 + d2
α̇ sin δ, β̇ = α̇ cos δ (9)

that is, if the no-slip condition is enforced, vehicle’s linear
motion can be completely specified either by α̇ or β̇, while its
angular rate θ̇ by this linear velocity and the steering angle
δ. This suggests that, if we choose lR > robs, the WMR
will not collide with the obstacles. See Fig. 3. Note again
that this curvature condition in fact determines the desired
steering angle δ from (8).

Once this collision-free path is constructed as a compo-
sition of straight line and arc segments, we then generate
timed-trajectory on them. Here, the goal is to generate
the trajectory with fastest speed permissible by the no-slip
condition. For this, as stated above, we utilize the relation
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(1) to explicitly relate the given trajectory and the constraint
force required to produce that motion while enforcing no-slip
condition.

More precisely, given a candidate trajectory
(q(t), q̇(t), q̈(t)) on a segment, we can compute the
required constraint force λ from (1) with τ also computed
from (7). We can then check the possibility of violation of
the no-slip condition via (4).

We now present a procedure for the trajectory generation
for the straight line segment and the arc segment:
• Straight line segment: For this, δ = 0 and we can also

assume θ = c with c ∈ < being a constant, from the
symmetry of the WMR’s dynamics w.r.t. θ and θ̇ = 0.
On the straight line segment, we also design a timed-
trajectory α(t), which then completely describes the
motion of the vehicle on the segment.
Given this α(t) with δ̇ = δ̈ = 0, we can further compute
the required motor torque τM by using (7) and τF =
τR = 0.5τM , i.e.,

(mr2 + IF + IR)α̈(t) = τM , τδ = 0

Moreover, we can write the relation (1) s.t.,

λ = (AM−1AT )−1[AM−1τ + Ȧ(q)q̇]

= [−mr
2 − IF + IR

2r
α̈, 0,−mr

2 + IF − IR
2r

α̈, 0]T

This then implies that the required constraint force λ
is purely proportional to α̈(t), thus, we can prevent the
wheel slippage at the front and rear wheels by adjusting
α̈(t) so as to comply with the no-slip condition (4), i.e.,
|α̈| ≤ µsg

r with d1 = d2, IF = IR. The above equations
about τ and λ also mean that, if the trajectory α(t) is
time-scaled by a constant factor st > 0 (i.e., new time
t = stt

′), the torque τM should be scaled by s2t and so is
the constraint force λ as well. It is very useful property
for motion planning with no slip condition enforced.

• Constant curvature arc segment: Since the curvature
of the arc is solely determined by δ (see Fig. 3), we
have δ̇ = 0, although, in this case, θ̇ 6= 0. On the
arc segment, let us define timed-trajectory α(t). Then,
similar to above, this α(t) completely describes the
vehicle motion on the segment with its yaw rate θ̇ also
given by (9). Moreover, with δ̇ = 0 and δ̈ = 0, we
can also compute the required torque to produce this
timed-trajectory by using (7) and τF = τR = 0.5τM ,
i.e.,

f1(δ)α̈(t) = τM , f2(δ)α̈(t) = τδ

where f1(δ), f2(δ) are some functions of δ only. We
can then write the relation (1) s.t.,

λ = (AM−1AT )−1[AM−1τ + Ȧ(q)q̇]

= [k1α̈, k21α̈+ k22α̇
2, k3α̈, k41α̈+ k42α̇

2]T

where k21, k22, k41, k42 are some functions of δ only,
and k21 > 0, k22, k41, k42 < 0 for our radio-controlled
WMR. Therefore, given α(t) and δ, we can compute the
constraint force λ and check if the motion is feasible
under the no-slip condition (4). In this case,

α̇ ≤
√

0.5µsmg
max (|k22|,|k42|) if α̈ = 0

α̇ <
√

0.5µsmg
max (|k22|,|k42|) if α̈ 6= 0

because k21 and k22 are not same sign, k41 and k42
are same sign, so, if α̈ 6= 0 and α̇ ≥

√
0.5µsmg

max (|k22|,|k42|)
(maximum speed), λ2 or λ4 exceed static friction force
and WMR slips. Therefore, WMR should drive constant
speed in arc segment in order to drive with a speed as
fast as possible while preventing slippage. The above
equations about τ and λ also manifests the well-known
time-scaling property on the arc segment as well as,
with the time-scaling factor st > 0, again, τM will be
scaled by s2t and so is the constraint force λ. As stated
above, it is very useful property for motion planning
with no slip condition enforced.

To sum up, if we want to drive as fast as possible
while preventing slippage, in arc segment, WMR should
drive with constant maximum speed. And, in straight line
segment, WMR should drive with maximum acceleration,
and then maximum deceleration until WMR’s speed reaches
maximum speed of arc segment (determined by δ) just
before entering arc segment. Since, if WMR decelerates just
before entering the arc segment in order to reach maximum
speed of arc segment enforced by no-slip condition, WMR
satisfies no-slip condition while concatenating each segment,
so WMR should not slip while concatenating straight line
and arc segment. Also, in straight line segment, driving with
maximum acceleration and deceleration is the fastest driving
technique while preventing slippage. Similar to above, in
arc segment, driving with maximum speed while preventing
slippage is optimal (If WMR accelerate, it cannot drive faster
than maximum speed).

IV. BACKSTEPPING-BASED TRAJECTORY TRACKING
CONTROL DESIGN

To allow WMR to track the no-slip trajectory on each
segment as defined above, we design a feedback trajectory
tracking control. Since the WMR is under the nonholonomic
constraint, we also utilize the backstepping technique [30]
in designing our tracking control. For that, let us denote by
pdf (t) := (xdf (t), y

d
f (t)) the desired trajectory of the front

wheel when the vehicle follows the no-slip timed-trajectory
on each segment. Since, on each segment, the motion of the
vehicle is only one-dimensional, this pdf (t) can completely
specify the vehicle motion at each time. We then want

e := (xf − xdf , yf − ydf )T → 0

where pf := (xf , yf ) := (x+d2 c θ, y+d2 s θ) is the position
of the front wheel.

Then, if we can achieve ė = −kee, ke > 0, we will have
e → 0 exponentially. However, this is not always possible,
since, in general, we have

ẋf = rα̇ cos(θ + δ) = ẋdf − ke(xf − xdf ) + νx

ẏf = rα̇ sin(θ + δ) = ẏdf − ke(yf − ydf ) + νy (10)
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Fig. 4. Simulation of autonomous dynamic driving of bicycle-type WMR
using Lagrange-D’Alembert formulation and Newtonian modeling.

where νx, νy are the error, which occur since there is no
guarantee that α̇ and θ + δ are as such to satisfy the above
equations with νx = νy = 0.

To deal with this mismatch, define V1 := 1
2e
T e. Then,

V̇1 = −keeT e+ eT ν

since ė = −kee+ν as shown above with ν := (νx, νy) ∈ <2.
Let us augment V1 s.t., V := V1 +

1
2γ ν

T ν. Then, we have

V̇ = −keeT e+
1

γ
νT (ν̇ + γe)

which suggests the following backstepping law

ν̇ = −γe− kνν (11)

to achieve

V̇ = −keeT e− kννT ν

implying (e, ν)→ 0 exponentially.
This backstepping law (11) then needs to be decoded into

the real control inputs τM , τδ . For this, following the idea of
[30], by differentiating

ν =

(
rα̇ cos(θ + δ)− ẋdf + ke(xf − xdf )
rα̇ sin(θ + δ)− ẏdf + ke(yf − ydf )

)
from (10) and plugging it into (11), we can obtain[
r cθ+δ −rα̇ sθ+δ
r sθ+δ rα̇ cθ+δ

](
α̈d
δ̇d

)
(12)

= p̈df + kν ṗ
d
f − keė− (γ + kekν)e− rα̇

(
kν cθ+δ −θ̇ sθ+δ
kν cθ+δ +θ̇ cθ+δ

)
where α̈d, δ̇d are now the desired command for the front
wheel and the steering angle. We can then design the control
torques τM , τδ from (7), δ̈ = −kδ(δ̇ − δ̇d) with kδ > 0
large enough and τF = τR = 0.5τM . Then, we can show
that, from the above exponential convergence, the error (e, ν)
is ultimately bounded with the bound possible to made
arbitrarily small by increasing the control gains ke, kν , kδ .

Simulation results of the proposed framework, including
trajectory generation and tracking control, for the bicycle
dynamics model, are presented in Fig. 4, where we can see
that the bicycle WMR can drive among the obstacles with no
slippage. The result on the left is using Lagrange-D’Alembert
formulation and right result is using Newtonian modeling,
which is almost same result on the left.

Fig. 5. Modified radio-controlled WMR.

V. EXPERIMENTS WITH CUSTOM-MODIFIED
RADIO-CONTROLLED CAR

Fig. 1 shows the top view of Traxxas Slash. The Slash
is an electric powered, 2.4GHz radio controlled 1/16 scale
4WD car. It includes a receiver, an electronic speed control
(ESC), steering servo, motor, and batteries. As the receiver
grasps signals from the transmitter of a hand-held radio unit,
the electronic speed control drives one Titan 550 motors by
responding to the pulse width modulation (PWM) signal.
The motors deliver on demand torque for wheels-up launches
and maximum speed increases to over 30mph on one 6-cell
NiMH battery packs.

Fig. 5 shows the top view of the developed autonomous
vehicle. The receiver part of the Traxxas Slash are substituted
with an Arduino to control steering stepper motors and Titan
motors with PC. The Arduino is a single-board microcon-
troller to make using electronics in multidisciplinary projects
more accessible. The length of a pulse sets the position of
the stepper motor where they are used to provide actuation
for steering the vehicle.

The developed vehicle is able to communicate with a PC
base station. It is done through Xbee protocol. The protocol
is intended for embedded applications requiring low data
rates and low power consumption. One of the key features
of Xbee is its wide range which can vary anywhere between
100 meters to 4 km. Also shown in Fig. 5 are markers to
be used with VICON motion capture system to measure the
position and orientation of the vehicle with 125Hz update
rate. The sampling rate of the whole system is set to be 5ms
with data sustained if their update rate is slower than 5ms.

For our radio-controlled WMR in Fig. 5, the control input
is the motor torque τM and the steering angle δ not its torque
τδ , since its steering is controlled by stepper motors. To
address this, instead of τδ , we rather integrate δ̇d in (12)
to construct δd, i.e.,

δd(t) = δd(0) +

∫ t

0

δ̇d(τ)dτ

and apply this δd(t) to the steering stepper motors. And
WMR’s mass m = 1.03kg, distances of the rear and front
wheels from mass center position d1 = d2 = 10.4cm, and
radius of wheels r = 3.3cm.

Experimental results with this modified radio-controller
WMR are shown in Fig. 6, where the WMR is autonomously
controlled to drive to track the timed-trajectory, which con-
sists of line and arc segments and encloses an obstacle in
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Fig. 6. Experimental results of trajectory tracking using modified radio-
controlled WMR.

the center, with a speed close to the threshold of onset of
slippage.

VI. CONCLUSION

In this paper, we consider the autonomous control problem
of dynamic driving of WMR with a fast speed yet with
no slippage in an environment having some obstacles. For
this, we utilize Lagrange-D’Alembert formulation, which,
differently from the widely-used Newtonian vehicle model,
allows us to directly relate the system’s state and control to
the required constraints force, thus, also to predict possibility
of no-slip condition being violated. We also present a trajec-
tory generation scheme to avoid collision with obstacles and
slippage at the wheels. A backstepping-based control law is
also presented to enable the bicycle-type WMRs to track the
generated trajectory. Experiment with our custom-modified
radio-controller high-speed vehicle is also performed to
validate the framework.

Some possible future research topics include: 1) applica-
tion of one-line tire friction coefficient estimation algorithm
to real-time prediction of possibility of slippage; and 2)
control synthesis to utilize the wheel slippage.
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