
1                                                                                     IEEE CICC 2025                                                                   

An Energy and Area-Efficient PAM-4 Data Coding Scheme with 
Embedded Supply Noise Stabilization for Single-Ended Memory 
Interface 

Giyeong Heo*1, Younghwan Chang*2, Yong-Un Jeong3, Jaekwang Yun1,4, Jusung 

Lee1,2, Shin-Hyun Jeong1, Sanghyuk Seo1, and Suhwan Kim1 

1Seoul National University, Seoul, Korea, 2Samsung Electronics, Hwasung, Korea 

3Sejong University, Seoul, Korea, 4SK Hynix, Icheon, Korea 

*Equally Credited Authors (ECAs) 

To meet the demand for high bandwidth memory, PAM-4 signaling has been 
recently introduced as an alternative to conventional NRZ signaling [1-5]. Although 
achieving twice the per-pin data rate of NRZ at the same clock frequency, PAM-4 
signals are more vulnerable to noise sources such as inter-symbol interference (ISI), 
crosstalk (XT), and power noise due to a reduction in vertical and horizontal eye 
margin [2], [3]. To mitigate these noise sources with minimal area, PAM-4 data 
coding schemes have been proposed [1-5]. Most of these works use lookup table 
(LUT)-based 7b/8b maximum transition avoidance (MTA) coding to improve the 
signal integrity (SI) by eliminating maximum transitions, which significantly degrade 
both ISI and XT [1-4]. For 7b/8b MTA coding, the extra pin formerly used for data 
bus inversion (DBI) is used to transfer 1-bit of unencoded data per lane to maintain 
data bandwidth as before encoding. However, due to the absence of the DBI 
function that was originally used to improve energy efficiency and supply voltage 
fluctuation [6], power noise has become more critical in the 7b/8b MTA. In addition, 
applying DBI in conjunction with MTA using an extra pin is not a viable solution since 
it can regenerate maximum transitions [3]. Therefore, additional compensation 
circuits such as low-dropout (LDO) regulators is used to minimize power noise, but 
at the cost of additional area and power overhead [1]. 

This paper proposes a transmitter architecture employing embedded transition-
injecting MTA (eTI-MTA) coding, which minimizes power noise without additional 
compensation circuitry. The proposed X(N)OR-based eTI-MTA coding algorithm 
reduces pattern-dependent noise, thus providing supply noise stabilization and 
further ISI reduction compared to conventional MTA coding. As these functionalities 
are all embedded in the data coding algorithm itself, signal integrity can be improved 
without requiring additional compensation circuits. Furthermore, the eTI-MTA 
coding is implemented with a low gate count and low logic-depth, thus enabling 
energy and area-efficient operation of the proposed transmitter. 

Fig. 1 illustrates the impact of supply noise and ISI on the transmitted signal for LUT-
based 7b/8b MTA and the proposed eTI-MTA. To address the noise sensitivity 
problem of the PAM-4 signal, 7b/8b MTA eliminates maximum transitions to improve 
eye margin in terms of ISI and XT. However, power supply induced jitter (PSIJ) still 
exists due to pattern-dependent power noise caused by data pattern with sparse 
transitions and is worsened in the absence of DBI [7]. To alleviate this issue, the 
proposed eTI-MTA coding injects additional inter-symbol transitions to generate 
data pattern with high transition density, which results in PSIJ reduction. ISI is also 
reduced and larger middle eye is achieved compared to 7b/8b MTA, due to the 
consecutive identical digits (CIDs) rejection effect of our proposed coding. 

In Fig. 2 (top), algorithm of the two processes in eTI-MTA coding is described. For 
MTA encoding, if the even-numbered symbols have equal MSB and LSB values 
(SE1, SE2=11 or 00), the LSB of the corresponding symbol is flipped. Through this 
process, all even-numbered symbols are encoded to have symbol values of either 
10 or 01. As a result, all maximum transitions are eliminated since the sequence of 
11 or 00 cannot appear consecutively. For transition injection, if the odd-numbered 
symbols have equal symbol values of either 10 or 01 (SO1, SO2=10 or 01), the MSB 
of the SE1 is flipped and transitions on both side of SE1 are guaranteed to occur. 
Decoding also consists of two processes: (1) removing injected transitions using an 
MSB flipped signal (SE1’) and (2) decoding even-numbered symbols using flag 
signal (XOP[1:0]). As shown in Fig. 2 (bottom), all these functions can be 
implemented with simple X(N)OR-based gate logic and the critical path of this logic 
is composed of only two X(N)OR gates and a NAND gate. Thus, low latency of the 
encoder and decoder is achieved compared to LUT-based MTA coding, which 
require additional inversion logic [3]. 

Fig. 3 presents the top architecture and sub-blocks of the transmitter that is 
implemented to verify the performance of the proposed eTI-MTA coding scheme. 
The data generator of the transmitter is implemented through digital synthesis to 
provide three types of data pattern: pseudo-random data, 7b/8b MTA coded data 

and eTI-MTA coded data. A clock DCDL, consisting of 5-bit fine delay control and 
1-bit coarse delay control, is used to align the data arrival timing of each data lane 
and compensate for quadrature error at each transmitter. An unstacked tailless 
current-mode logic (CML) driver, consisting of an unstacked PMOS current source 
and pull-down passive resistors, is employed as an output driver to minimize the 
dynamic switching power caused by the high data rate and dense transition pattern 
[8]. Since the output impedance of the tailless CML driver structure is controlled by 
passive resistors, the pre-driver structure can be simplified compared to that of a 
voltage-mode driver. Since the capacitive load of the pre-driver is reduced, lower 
dynamic power consumption can be achieved. Furthermore, since unstacked 
current source does not require a bias generator unlike its double-stacked 
counterpart, this structure is more suitable for high-speed, low-power memory 
interface in terms of area and energy efficiency. 

Because MTA coding eliminates maximum transitions, the middle eye limited by 
2∆V transitions becomes the bottleneck of a MTA coded signal. The proposed eTI-
MTA coding can achieve a larger middle eye opening without additional 
compensation circuits, owing to the CIDs rejection effect as described in Fig. 4 (top). 
In eTI-MTA, all even-numbered symbols have a value of either 10 or 01 after MTA 
encoding, effectively eliminating CIDs of 11 and 00, which induce the worst-case ISI 
on the middle eye. Since transition injection occurs only when adjacent symbol 
values are both 10 or 01, the CIDs rejection effect is preserved even after this 
process. Single-lane measurement results, shown in Fig. 4 (bottom), demonstrate 
the ISI reduction effect of the proposed eTI-MTA coding scheme. Compared to raw 
PAM-4 signal with pseudo-random data and 7b/8b MTA coded data, the middle eye 
opening of eTI-MTA coded signal is increased by 10~12mV in the vertical direction 
and 0.07UI in the horizontal direction at 30Gb/s. Additionally, top and bottom eye 
openings are increased since the elimination of CIDs of 11 and 00 also reduces 
multi-cursor ISI. 

As shown in Fig. 5 (top-right), the average number of transitions is increased by 
13.3% after transition injection compared to LUT-based 7b/8b MTA coding [3]. In 
addition, the eTI-MTA coding achieves 10.2% higher transition density compared to 
the 7b/8b MTA coding using a modified lookup table for maximum symbol transition 
density. The increase in the average number of inter-symbol transitions shifts 
current components in the mid-frequency range to higher frequencies, resulting in 
an average current reduction of 6.8dB in the mid-frequency range as shown in Fig. 
5 (top-left). The eTI-MTA coded signal reduces PSIJ by eliminating data patterns 
with sparse transitions, which induce supply noise when combined with power 
distribution network (PDN) impedance peaking. Measurement results in Fig. 5 
(bottom) show that all eyes of PAM-4 signals are closed due to supply noise using 
7b/8b MTA coding. On the other hand, all eyes remain open by at least 20.2mV in 
the vertical direction and 0.22UI in the horizontal direction at 24Gb/s using the 
proposed eTI-MTA coding. The multi-channel measurement is performed with 9 and 
10 channels enabled, respectively, to account for the pin overhead of each MTA 
coding scheme. 

The comparison table in Fig. 5 summarizes the features of the proposed eTI-MTA 
in comparison to other MTA coding methods. The eTI-MTA coding has advantages 
in terms of hardware complexity and latency overhead compared to LUT-based 
7b/8b MTA coding, which require a lookup table and additional logic. These 
advantages can be further improved if the eTI-MTA encoder is implemented in the 
high-speed data path with a custom layout. The decoder can also be implemented 
with simple logic in a similar manner. As a result, the read/write latency overhead of 
the memory interface can be minimized. In addition, although eTI-MTA requires an 
additional pin for decoding, the data coding scheme can improve jitter performance 
in terms of PSIJ and multi-cursor ISI without the need for an additional equalizer or 
LDO regulators. 

The prototype transmitter to verify the proposed eTI-MTA is fabricated in a 28nm 
CMOS process. VDDQ and VDD are both 1.1V and output voltage swing is 0.3V for 
the saturation condition of the driver's PMOS current source. The transmitter 
achieves 30Gb/s with single channel enabled and 24Gb/s with multi-channel 
enabled. Channel loss for single and multi-channel measurements are 4.2dB at 
7.5GHz and 3.5dB at 6GHz, respectively. In Fig. 6, the performance of the 
transmitter in this work is summarized in comparison with state-of-the-art 
transmitters that use MTA coding. Owing to the ISI and PSIJ reduction effect of eTI-
MTA coding, our transmitter achieves an energy efficiency of 1.11pJ/bit, which is 
the lowest among all previous works.  
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Fig. 1. Eye diagram comparison of the 7b/8b MTA and the proposed eTI-MTA 
in terms of supply noise and inter-symbol-interference (ISI). 
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Top block diagram of transmitter with eTI-MTA encoder
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Fig. 3. Implemented top architecture and detailed circuit structures of the 
proposed transmitter with eTI-MTA encoder. 
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Fig. 6. Comparison with the state-of-the-art MTA-coded transmitters. 
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