
 

Abstract—This presents a fully-synthesizable cyclic Vernier 

time-to-digital converter (TDC) which cancels the offsets by a 

quad-edge offset cancellation (QOC) scheme. The system delays 

its internal clocks and uses the clock offsets to compensate for 

many types of offsets altogether, which includes the wiring 

mismatches, the duty cycle skews, and the long-term jitters of 

the clocks. During calibration, the QOC-TDC measures the 

offsets of the clock paths. The measured offsets are then canceled 

in the normal mode. An additional scheme of coarse-fine 

boundary synchronization further enhances the output 

monotonicity. Consisting of only standard library cells offering 

fully-automated implementation, the QOC-TDC achieves a 19-

bit range, a 4.5-ps resolution, and the throughput of 22MS/s, 

while drawing 3.4mW from a 1.0V supply, as shown by the post-

layout simulations in 28nm CMOS. 

 
Keywords— offset cancellation, synthesizable, standard library 

cell, cyclic Vernier, time-to-digital converter.   

I. INTRODUCTION 

Time-to-digital converters (TDCs) with high resolution 

have been popular in recent mixed-signal circuits for many 

applications, including test instrumentation and phase-locked 

loops (PLLs) [1-6]. However, conventional delay-line-based 

TDCs suffer from limited resolution due to physical delay 

constraints [2,7,8]. 

A successive approximation [9] offers better precision but 

sacrifices power and area [1]. Timing amplification in [10,11] 

relaxes the delay requirement, but it amplifies the noise [1]. 

Other analog works including delay locked loops [12], gated 

ring oscillators [13], interpolators [14], Vernier delay-lines 

[15], and delay-less TDCs [16] also suffer from either 

mismatches or limited throughput [1,2,7,8]. 

Hence, digital-based designs have been the popular 

replacement of analog designs due to many advantages 

including area, power, cost, robustness [2,17,18], and speed 

[8]. The digital design also benefits portability and scalability 

from the scale-down of CMOS processes [17-20]. In addition, 

fully-synthesizable designs based on the standard library cells 

(SLCs) further offer fully-automated implementation, so the 

design and validation procedures can be simplified [4,18]. 

However, they still suffer from the mismatches. 

Synthesizable stochastic TDCs [1,7] have been proposed 

to alleviate the mismatch issues. However, they are limited in 

the measurement range [21] since the range is proportional to 

the total number of delay stages. Besides, they require 

polyphase signaling [22] which costs area. Work in [17] has 

introduced a synthesizable cyclic Vernier TDC, and a more 

portable design only using the SLCs is proposed in [18]. 

Recent work in [22] has proposed another synthesizable 

design with calibration and throughput-enhancing features. 

However, [17] and [22] are based on soft-edged flip flops [23] 

that require custom layouts to minimize the offset caused by 

the setup time. In addition, a dual-edge detection scheme used 

in [17], [18], and [22] suffers from the mismatches by duty 

cycle skews of internal clocks. Moreover, the asynchronous 

clocking of the two counters in the cyclic Vernier TDC may 

result in non-monotonic outputs at the coarse-fine boundaries. 

To address the issues outlined above, we present a SLC-

only and fully-synthesizable TDC with a quad-edge offset 

cancellation (QOC) scheme. In this work, we apply additional 

offsets to the clock paths to avoid the output glitches of the 

edge detector due to the meta-stability at the beginning of 

calibration. The measured offsets include the wiring 

mismatches, the duty cycle skews, and the effect of finite 

setup-and-hold time. The QOC-TDC measures such offsets 

during calibration and cancels the offsets in the normal cyclic 

Vernier operation, so the offsets at the outputs are well 

reduced. An embedded DCO controller finely adjusts the 

DCOs so that the long-term jitters are limited, even in the case 

of long-range inputs. The QOC-TDC also enhances the 

output monotonicity by synchronizing the counter output 

values at the coarse-fine boundaries. 

II. THE ARCHITECTURE OF THE PROPOSED WORK 

A conventional synthesizable cyclic Vernier TDC may 

suffer from the degradation of output accuracy due to several 

offsets. The causes of the offsets include: the wiring 

mismatch between CKF and CKS, the duty cycle skew of CKS, 

the long-term jitters in CKF and CKS, and the non-linearity at 

the coarse-fine boundaries, as shown in Fig. 1.  

The architecture of the proposed QOC-TDC is shown in 

Fig. 2. A DCO controller block limits the long-term jitters of 

the DCOs. It is comprised of a flip-flop PD for phase 

detection, a DCO control block CTRL, a divider /N, and a 

tunable oscillator DCOP. The CTRL generates a control code 

NCTRL and updates NCTRL at every cycle of a reference clock 

CKR. Therefore, NCTRL limits the jitter accumulation. The 

DCO controller performs as a narrow-bandwidth PLL with a 
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Fig. 1. Block diagram of a fully-synthesizable cyclic Vernier TDC and the 

causes of offsets.  

978-1-6654-8485-5/22/$31.00 ©2022 IEEE 3378

20
22

 IE
EE

 In
te

rn
at

io
na

l S
ym

po
si

um
 o

n 
C

irc
ui

ts
 a

nd
 S

ys
te

m
s (

IS
C

A
S)

 | 
97

8-
1-

66
54

-8
48

5-
5/

22
/$

31
.0

0 
©

20
22

 IE
EE

 | 
D

O
I: 

10
.1

10
9/

IS
C

A
S4

87
85

.2
02

2.
99

37
64

6

Authorized licensed use limited to: Seoul National University. Downloaded on September 19,2023 at 05:53:04 UTC from IEEE Xplore.  Restrictions apply. 



 

single target output frequency. Thus, a compact design of 

CTRL supporting a narrow range of NCTRL is applicable, and 

the DCO controller can be much smaller than conventional 

digital PLLs. DCOP is a ring oscillator that consists of 

inverters with parallel NAND cells (INV-NAND) for delay 

tuning [22]. The INV-NAND structure is also used to build 

tunable delay cells throughout this work. A pair of oscillators 

DCOS and DCOF are identical to DCOP since they intend to 

generate almost the same but slightly different frequencies for 

the Vernier operation. DCOS and DCOF are calibrated by 

TUNES and TUNEF so that the frequency difference between 

CKS and CKF is set to the target resolution of TDC.  

Although we cannot eliminate the wiring mismatch  

between CKS and CKF, the extent of  can be predictably 

constrained during the automated place-and-route step by 

limiting the wire length and the placement area [17]. A 

tunable delay cell  delays CKF and generates CKFD. Then, 

the offset  of CKFD with respect to CKS is tunable since  = 

+. We calibrate  so that becomes greater than the setup-

and-hold time of edge detectors EDI and EDQ. The calibration 

provides a margin for avoiding the output glitches of EDI and 

EDQ due to the meta-stability at the beginning of calibration. 

CKFD and CKS are then used as the operating clocks of the 

counters FCNT and SCNT, respectively. Another delay cell 

 generates a signal CKSD which is ideally a quadrature-

delayed version of CKS. Then, the offset of CKSD with respect 

to CKFD becomes . EDQ then detects the edges of CKS to 

enhance the throughput. 

The captured signals CSFI and CSFQ, and the measured 

counts CNTS and CNTF, are processed in the QOC logic block. 

It cancels all the offsets as shown in Fig. 2 and generates a 

coarse count NS, a residual count NF, a flag DET for the edge 

detection, and a signal RDY indicating the output is ready. 

III. CYCLIC VERNIER TIME-TO-DIGITAL CONVERTER WITH  

QUAD-EDGE OFFSET CANCELLATION 

A. Basic Concept of the Offset Cancellation 

The proposed QOC-TDC offers precise measurements by 

canceling the offset  from the initial residual timing TR,O, as 

shown in Fig. 3. The resolution D of the cyclic Vernier TDC 

is expressed as follows: 

 S FΔ T T   

where TS and TF are the periods of CKS and CKF, respectively. 

Then, the TDC output TOUT is expressed as follows: 

  1OUT C R S S FT T T N T N Δ      

A more practical case of a non-zero offset, as shown in Fig. 

3, leads to an extra offset term of  in (2) so that 

 
,OUT OFFSET C RT T T     

The QOC-TDC cancels the offset  from TOUT,OFFSET. 

 

B. Offset Measurement Procedure during Calibration 

As shown in Fig. 4, four pulses (PESI, NESQ, NESI, and 

PESQ) are generated by a clock-domain-crossing circuit in the 

QOC logic block. The pulses indicate the positive and 

negative edge detections of CKS and CKSD. The same signal 

is applied to both START and STOP for simultaneous 

activation of DCOF and DCOS during calibration, as shown 

in Fig. 5. Then, five offset counts (IOS, QON, ION, QOP, and IOP) 

are sequentially captured by the pulses, as shown in Fig. 5. At 

the 1st PESI pulse,  ≈ IOSD since  – IOSD ≈ 0. Similarly, we 

can acquire the following relationship at the 2nd PESI pulse: 

  S OP OS PT I I Δ N Δ    

D can be monitored by (4) if TS is measured from CKS. 

 The duty cycle skews of CKS (S) and CKSD (SD) are also 

included in the offset counts ION and QON, as shown in Fig. 6 

(a). ION and QON measure the extent of such skews, and 

therefore the QOC scheme relaxes the duty cycle requirement 

of CKS and CKSD. Note that the duty cycle of CKFD does not 

affect the offset since only the positive edges are used. 

 Although SLC flip-flops can be used as the edge detectors 

[18], their meta-stability by the setup time (TSU) and the hold 

time (THL) is not controllable. Thus,  needs to be chosen to 

avoid the glitches at the start of calibration as follows:  
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Fig. 2. Block diagram of the QOC-TDC specifying the offset cancellation. 
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Fig. 3. Timing diagram of a cyclic Vernier TDC with non-ideal offset cases. 
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Fig. 4. A quad-edge pulse generation circuit in the QOC logic block. 
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Fig. 5. Timing diagram of the offset estimations during calbration. 
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   SU HLT T     

where , as shown in Fig. 6 (b). A correctly chosen  

gives the robustness against the variation of the meta-stable 

region. The value of  is coarsely set to about TS/4 to 

maximize the throughput. The values of TSU and THL are 

process-dependent. For example, TSU ≤ 73ps and THL ≤ 32ps 

at the worst PVT corners in the 28nm process used in this 

work. Therefore, if TS = 784ps, then any value between 73ps 

and 123ps can be chosen as , and the constraint on  is well 

relaxed. After calibration, the offset counts, including the 

setup-and-hold time offsets, are stored in the registers and 

used to cancel the offsets in the normal mode.  

 

C. Offset Cancellation Procedure in the Normal Mode 

The QOC-TDC measures the input timing in the normal 

mode and generates NS and an initial residual count NF,O. NS 

can be directly measured from SCNT, but NF,O includes the 

offset  which is to be canceled. The initial residual timing 

TR,O is expressed as follows: 

  , ,R O F O F OST N N ID D    

Since the offsets at different edges may not be the same, four 

independent cancellation schemes are required.  

 The cancellation schemes are shown in Fig. 7 (a). For case 

①, a final residual timing TR is expressed as follows: 

   , , ,R 1 F O OS F O PT N I P N D     

where PF,O = Boolean (NF,O < IOS) to keep TR,1 positive. In the 

case of ③, TR is expressed as follows: 

  , ,R 3 F O OP ON OST N I I I D     

by (6) and TPW in Fig. 6 (a). Similarly, TR for the case ④ is 

expressed as follows: 

  , ,R 4 F O OP OP OST N I Q I D     

by (6) and  in Fig. 6 (a). Then, TR for the case ② is 

expressed as follows: 

  , ,R 2 F O OP ON OST N I Q I D     0

by (6), TNE, and TPW in Fig. 6 (a). The result from the earliest 

detected edge among (7)-(10) becomes the final residual 

count NF, which enhances the throughput. In summary, the 

QOC scheme measures all the offsets and cancels them from 

NF. Fig. 7 (b) depicts the throughput (1/TST) decrease due to 

the effects of TF  D, , , and the duty cycle skews.  

 

D. Boundary Synchronization of Coarse-fine Counts 

The cyclic Vernier TDCs may suffer from the output non-

linearity at the boundaries of the coarse-fine counts since TS 

and TF are asynchronously measured, as shown in Fig. 8 (a). 

The boundary conditions generally occur in the case of ① in 

Fig. 7. A circuit in the QOC block, shown in Fig. 8 (b), 

verifies the sanity of NS based on the finely measured NF,O 

and corrects the potential errors. 

In the case of NF,O ≥ IOS, the value of CNTS is expected to 

be incremented, while it is not to be incremented in the other 

case of  NF,O < IOS. Fig. 9 shows the correct (in blue) and 

erroneous (in red) operation of CNTS for both cases. The 

errors in NS are detected and corrected as follows:  

  , ,1 2S NEW S F O CFN CNT P E      

By the scheme above, the monotonicity of output is enhanced.  

IV. SIMULATION RESULTS 

The QOC-TDC was implemented within the area of 

0.011mm2 in 28nm CMOS process, as shown in Fig. 10. The 

results in Fig. 11 showed that the QOC-TDC offers accurate 

offset estimations with robustness against the variations. It 
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achieved a 19-bit range, a 4.5-ps resolution, and throughput 

of 22MS/s. The single-shot precision was 0.98LSB and the 

INL was less than 3LSBs, as shown in Figs. 12-14.  

Table I summarizes the performance of recent works. Here 

we have chosen a popular Figure-of-Merit (FoMN) for TDCs. 

We have also used FoMB to compare the works without Nlin.  

It is shown that this work achieves the best FoMN and FoMB 

among all work listed. It is the only cyclic Vernier TDC 

among listed, supporting the full offset-canceling feature for 

superior FoMs, while it requires only SLCs for the synthesis. 

V. CONCLUSION 

We designed a fully-synthesizable QOC-TDC that cancels 

the several offsets altogether. The QOC-TDC first measured 

the offsets during calibration, and it canceled the offsets in 

the normal mode. It also synchronized the values of counter 

outputs at the coarse-fine boundaries to improve the output 

accuracy and monotonicity. It achieved a 19-bit range and a 

4.5-ps resolution with a throughput of 22MS/s, while it 

consumed 3.4mW at the supply of 1.0V in a 28nm CMOS.  
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TABLE I.     COMPARISON OF RECENT FULLY-SYNTHESIZABLE TIME-TO-DIGITAL CONVERTERS 

Year 2011 2015a 2015 2018a 2020 2020a 
This worka 

Publisher TCAS-I [18] NEWCAS [24] ISSCC [1] ISCAS [7] ACCESS [25] MWSCAS [22] 

Type Cyclic Vernier 
Spatial 

Oversampling 

Stochastic 

Interpolation 

Stochastic 

Interpolation 

Tapped  

Delay-lines 
Cyclic Vernier Cyclic Vernier 

Area (mm2 @ node) 0.0060 @ 65n 0.0200 @ 65n 0.036  @ 14n 0.2210 @ 65n 0.089 @ 180n 0.0016 @ 130n 0.0109 @ 28n 

Power (mW @VDD) 2.00 @ 1.0V 3.90 @ 1.0V 0.78 @ 0.6V 70.80 @ 0.8V  5.4 @ 1.8V 0.47 @ 1.2V 3.4 @ 1.0V 

Resolution (ps) 5.5 7 1.17 0.85 111 2.8 4.5 

Output range (bits) 15 11 10 14 20.6 17 19 

Throughput (MS/s) 10 50 100 125 10 10.5 22 

SSP (LSB) 0.78b 0.34 N/A 1.11 0.49 N/A 0.98 

INL (LSB) N/A N/A 2.3 2.94 8 N/A 3.0 

FoMN
d (pJ/step) N/A N/A 0.025137 0.136207 0.003058 N/A 0.001179 

FoMB
e (pJ/step) 0.006104 0.038086 0.007617 0.034570 0.000340 0.000343 0.000295 

SLC only? Yes Yes Yes Yes Yes No Yes 

Offset canceling? No No Yes Yes Yes Yes (partly)c Yes 
a.  

Post-layout simulation results.  
b.  

Only valid in short-range inputs within TIN = 210ps  (e.g. The SSP of 4.18 LSB at TIN = 100ns).  
c.  

Does not cancel the duty cycle skews (only cancels the wiring mismatch) 
d.  

FoMN = Power (mW) / {2Nlin × Rate (MS/s)}, where Nlin (effective number of linear bits) = Bits – log2(INL + 1) [26-29].     
e.  

FoMB = Power (mW) / {2Bits × Rate (MS/s)} [28-29].   

d.  
Only valid in short-range input within TIN = 210ps  (e.g. The SSP of 4.18 LSB at TIN = 100ns).  

e.  
Not support the duty cycle skews (only cancels the wiring mismatch) 
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Fig. 10. Layout of QOC-TDC with the parameters and the measured offsets. 
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Fig. 11. Post-layout simulations of the offset measurement versus the corners. 
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Fig. 12. Post-layout simulations of the single-shot precision (for 2,000 trials). 
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Fig. 13. Post-layout simulations of the sampling time (22MS/sec throughput).  
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Fig. 14. Post-layout simulations of the transfer curve and the INL performance. 

Only the worst INLs at every 9.0ns-interval are plotted to show the distribution. 
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